Задача №1. Расчёт средней арифметической, модального и медианного значения

Распределение торговых фирм по размеру месячного товарооборота характеризуется следующими данными:

№п/п Товарооборот, млн. руб. Число фирм
1 до 5 20
2 5-10 26
3 10-15 20
4 15-20 14
5 20-25 10
6 25 и более 10
Итого - 100

Определите:

а) средний размер месячного товарооборота на одну фирму;

б) модальное и медианное значение месячного товарооборота;

в) сделайте выводы о характере данного распределения.

 

Решение:

а) Рассчитаем средний размер товарооборота на одну фирму.

В данном ряду варианты усредняемого признака (товарооборот) представлены не одним числом, а в виде интервала «от – до». Причём первый и последний – интервалы открытые.

В таких рядах условно принимается, величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей. Таким образом, товарооборот первой группы от 0 до 5 млн. руб., товарооборот последней – от 25 до 30 млн. руб. Исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной:

Формула средней арифметической взвешенной

Чтобы применить эту формулу, необходимо варианты признака выразить одним числом (дискретным). За такое дискретное число принимается средняя арифметическая простая из верхнего и нижнего значения интервала. Так для первой группы дискретная величина х будет равна: (0 + 5) / 2 = 2,5. Дальнейший расчёт производится обычным методом определения средней арифметической взвешенной:

Расчёт средней арифметической взвешенной

Исходные и расчётные данные представим в таблице:

Товарооборот, млн. руб. Число фирм, f Середина интервала, х xf Сумма накопленных частот
0-5 20 2,5 50 20
5-10 26 7,5 195 46
10-15 20 12,5 250 66
15-20 14 17,5 245 -
20-25 10 22,5 225 -
25-30 10 27,5 275 -
Итого 100 - 1240 -

б) Определим модальное и медианное значение месячного товарооборота.
В интервальных рядах распределения с равными интервалами мода определяется по формуле:

Формула моды

xMo – начальное значение интервала, содержащего моду;
iMo – величина модального интервала,
fMo – частота модального интервала,
f(Mo-1) – частота интервала, предшествующего модальному,
f(Mo+1) – частота интервала, следующего за модальным.

Наибольшее число фирм (26) имеют величину товарооборота от 5 до 10 млн. руб. Следовательно, этот интервал является модальным интервалом ряда распределения. Введём следующие обозначения:

xMo=5, iMo=5, fMo=26, f(Mo-1)=20, f(Mo+1)=20.

Подставим эти значения в формулу моды и произведём вычисления:

Расчёт моды

Следовательно, наибольшее число фирм имеет товарооборот 7,5 млн. руб.

Медиана интервального вариационного ряда распределения определяется по формуле:

Формула медианы

где x – начальное значение интервала, содержащего медиану;
i – величина медианного интервала;
Σf – сумма частот ряда;
S(Me-1) – сумма накопленных частот, предшествующих медианному интервалу;
fMe – частота медианного интервала.

Определим, прежде всего, медианный интервал. Сумма накопленных частот, превышающая половину всех значений (66), соответствует интервалу 10 – 15. Это и есть медианный интервал, в котором находится медиана. Определим её значение по приведённой выше формуле, если:

x=10, i=5, Σf=100, S(Me-1)=46, fMe=20:

Расчёт медианы

Таким образом, половина фирм имеет товарооборот менее 11 млн. руб., а остальные фирмы – более 11 млн. руб.

в) В симметричных рядах распределения значения моды и медианы совпадают со средней величиной, а в умеренно ассиметричных они соотносятся таким образом:

Соотношение умеренно асимметричного ряда распределения

Соотношение характеристик центра распределения товарооборота свидетельствует об умеренной асимметрии:
3(12,4-11) ≈12,4-7,5


Смотри ещё