Задача №47. Построение модели линейной регрессии

Имеются данные о количестве проданного товара и его цене:

Количество (тыс. / день) Цена (руб. / за ед.)
8 5,0
10 3,5
24 2,0
16 2,5

Изобразить данные на графике, построить модель линейной регрессии, определить тесноту связи. Объяснить значение коэффициентов.

 Решение


Задача №53. Расчёт точечного прогноза

Имеются данные о рейтинге авиакомпании и ее пассажирообороте. Сделайте точечный прогноз значения рейтинга авиакомпании при пассажирообороте, равном 15 млн. пасс/км (линейная регрессия).

№ п/п х y
1 67,12 3,9
2 47,07 3,9
3 1,42 3,8
4 15,58 3,7
5 8,47 3,6
6 2,87 3,3
7 10,15 3,3
8 13,33 3,3
9 3,31 3,2
10 0,29 3,2
11 5,56 3,2
12 2,45 3,2
13 2,04 3,2
14 0,33 3,1
15 0,97 3,1
16 0,57 3,1
17 13,4 3,1
18 20,2 3,1
19 0,57 3,1
20 1,75 3
21 0,43 3
22 6,06 3
23 2,51 3
24 0,62 2,9
25 2,9 2,9
26 3,39 2,8
27 0,6 2,7
28 0,66 2,6
29 4,04 2,3
30 0,44 2,1

Решение


Задача №54. Расчёт коэффициента корреляции

Имеются данные о рейтинге авиакомпании и оценке ее безопасности. Вычислите линейный коэффициент корреляции.

№ п/п Рейтинг авиакомпании, y Оценка безопасности, х
1 3,9 0,7
2 3,9 0,68
3 3,8 0,59
4 3,7 0,25
5 3,6 0,63
6 3,3 0,5
7 3,3 0,46
8 3,3 0,24
9 3,2 0,23
10 3,2 0,6
11 3,2 0,46
12 3,2 0,5
13 3,2 0,51
14 3,1 0,3
15 3,1 0,55
16 3,1 0,6
17 3,1 0,76
18 3,1 0,46
19 3,1 0,3
20 3 0,35
21 3 0,4
22 3 0,35
23 3 0,3
24 2,9 0,3
25 2,9 0,57
26 2,8 0,33
27 2,7 0,3
28 2,6 0,3
29 2,3 0,4
30 2,1 0,25

Решение