Задача №1 Построение уравнения регрессии

Имеются следующие данные разных стран об индексе розничных цен на продукты питания (х) и об индексе промышленного производства (у).

 Индекс розничных цен на продукты питания (х)Индекс промышленного производства (у)
1 100 70
2 105 79
3 108 85
4 113 84
5 118 85
6 118 85
7 110 96
8 115 99
9 119 100
10 118 98
11 120 99
12 124 102
13 129 105
14 132 112

Требуется:

1. Для характеристики зависимости у от х рассчитать параметры следующих функций:

А) линейной;

Б) степенной;

В) равносторонней гиперболы.

2. Для каждой модели рассчитать показатели: тесноты связи и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции.

4. Выполнить прогноз значения индекса промышленного производства у при прогнозном значении индекса розничных цен на продукты питания х=138.

Решение


Задача №2 Оценить структурную модель на идентификацию

Модифицированная модель Кейнса:

Уравнение расходов на потребление

Уравнение инвестиций

Уравнение дохода

где

С – расходы на потребление;

Y – доход;

I – инвестиции;

G – государственные расходы;

t – текущий период;

t–1 – предыдущий период.

Применив необходимое и достаточное условие идентификации, определите, идентифицировано ли каждое из уравнений модели.

Определите метод оценки параметров модели.

Запишите приведённую форму модели.

Решение


Задача №3. Расчёт параметров регрессии и корреляции с помощью Excel

По территориям региона приводятся данные за 200Х г.

Номер регионаСреднедушевой прожиточный минимум в день одного трудоспособного, руб., хСреднедневная заработная плата, руб., у
1 78 133
2 82 148
3 87 134
4 79 154
5 89 162
6 106 195
7 67 139
8 88 158
9 73 152
10 87 162
11 76 159
12 115 173

Задание:

1. Постройте поле корреляции и сформулируйте гипотезу о форме связи.

2. Рассчитайте параметры уравнения линейной регрессии

Линейная функция.

3. Оцените тесноту связи с помощью показателей корреляции и детерминации.

4. Дайте с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.

5. Оцените с помощью средней ошибки аппроксимации качество уравнений.

6. Оцените с помощью F-критерия Фишера статистическую надёжность результатов регрессионного моделирования.

7. Рассчитайте прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости Уровень значимости 0,05.

8. Оцените полученные результаты, выводы оформите в аналитической записке.

Решение


Задача №4. Построение регрессионной модели с использованием фиктивной переменной

Исследовать зависимость между результатами зимней (Х) и летней (У) сессий.
В таблице приведена средняя оценка, полученная по итогам сессии, а также указана принадлежность студента к группе А или Б.

№ п/п х у Группа
1 3,7 4,8 Б
2 3,5 3,5 Б
3 4,3 5 Б
4 3 4 Б
5 4,6 4,2 Б
6 4,6 4,1 Б
7 3,8 4,8 А
8 3,6 3,5 Б
9 3,3 4,4 Б
10 3,9 3 Б
11 4,7 3,7 Б
12 4,6 4,4 Б
13 4,6 3,8 Б
14 3,3 3,1 Б
15 4,3 3,6 Б
16 3,1 4,8 А
17 3,2 3 А
18 4,2 4,8 А
19 3,3 3,4 Б
20 3,5 4,2 А

1. Построить линейную регрессионную модель У по Х.
2. Проверить значимость коэффициентов уравнения и самого уравнения регрессии.
3. Построить регрессионную модель У по Х с использованием фиктивной переменной «группа».
4. Проверить значимость коэффициентов уравнения и самого уравнения регрессии.
5. Вычислить коэффициенты детерминации для обычной модели и модели с фиктивной переменной.

Решение


AURA - Платок из натурального шёлка - Масаи